"Kembali Ke Dasar Elektronika Digital ... "

  • IC Timer 555 yang Multifungsi

    IC timer 555 adalah sirkuit terpadu (chip) yang digunakan dalam berbagai pembangkit timer, pulsa dan aplikasi osilator. Komponen ini digunakan secara luas, berkat kemudahan dalam penggunaan, harga rendah dan stabilitas yang baik

  • Animasi LED Dengan IC 4017

    IC 4017 adalah IC 16-pin CMOS dekade counter dari seri IC CMOS 4000. Sangat berguna jika ingin membuat animasi lampu atau LED secara sederhana seperti led berjalan, tulisan berjalan , counter/timer dan masih banyak kegunaan lainnya

  • Bermain DOT Matrix - LOVEHURT

    Project Sederhana dengan Dot Matrix dan Attiny2313. Bisa menjadi hadiah buat teman atau pacarmu yang ulang tahun dengan tulisan dan animasi yang dapat dibuat sendiri.

  • JAM DIGITAL 6 DIGIT TANPA MICRO FULL CMOS

    Jika anda pencinta IC TTL datau CMOS maka project jam digital ini akan menunjukkan bahwa tidak ada salahnya balik kembali ke dasar elektronika digital , sebab semuanya BISA dibuat dengan teknologi jadul

  • BIKIN PCB SEDERHANA TAPI GA MURAHAN

    Bikin PCB itu ga susah kok..dengan software EAGLE CAD dan teknik sterika kamu dapat membuat PCB untuk berbagai project elektronika mu ...

Tampilkan postingan dengan label microcontroller. Tampilkan semua postingan
Tampilkan postingan dengan label microcontroller. Tampilkan semua postingan

Minggu, 08 Juni 2014

Dukun Fusebit Mengalahkan Fusebit Doctor !


Pernah mengalami masalah ic tidak response setelah mengubah fusebit clock pada microcontroler AVR ? 
Anda lupa clock yg digunakan atau Xtal yang akan disolder entah kemana ?
Duit cekak di penghujung bulan sementara tugas sudah deadline ?



DUKUN FUSEBIT AKAN MEMBANTU ANDA !



Anda tidak perlu menggunakan Fusebit Doctor yg dijual dipasaran atau rangkaian njlimet lainnya




Cukup Menggunakan Praktek dasar timer 555 yang ada disini



Dengan Menggunakan Rumus  Frequency = 1.44 / [C*(R2 + 2*R1)] 
Maka buatlah clock dengan frekuensi 500khz- 1Mhz dan hubungkan dengan kaki output (3) dari timer 555 menuju  XTAL1 pada ic microcontroller AVR anda.



Putar-putar VR/ Trimpot sehingga memiliki resistansi berkisar 20k - 30 k ohm dan hubungkan avr ke isp programmer seperti biasa ( disarankan menggunakan stk500/avrisk mk2, rangkai micro seperti biasa dan jangan lupa di beri vcc/gnd/pull up di rst). Jika Read signature berhasil maka lakukan perubahan Fusebit seperti biasa (ubah ke default internal RC saja)

Contoh ubah fusebit di avrstudio 4



Syarat dan ketentuan:

  • IC microcontroller dalam keadaan BAIK, hanya fusebit clock nya saja yg salah atau lupa
  • Port SPI masih dalam posisi ENABLE, jika tidak maka perlu HVPP (high Voltage Parallel Programming) atau menggunakan universal programmer (All-7/All-100) yg biasanya ada di toko yg melayani pengisian EEPROM Player DVD/TV




TUNGGU APALAGI ... 
SELAMAT MENCOBA !!
Share:

Selasa, 18 Maret 2014

[TUTORIAL] Clinometer (pengukur ketinggian) Sederhana Memanfaatkan ADC




Persiapan sebelum memulai project :

  • Tutorial ADC dapat dibaca disini
  • Dasar menulis ke LCD dapat dilihat disini

Bahan-bahan yang dibutuhkan :
  • Minimum System / ATmega 8535/ ATmega 16
  • Display LCD 16 x 2 
  • Potensiometer linear (nickel) 10K ohm(2 buah)
  • Resistor 1K (2 buah)

Project ini adalah request dari anak SMA yang mendapatkan tugas matematika dimana gurunya cukup "Gila" untuk menantang anak didiknya membuat alat clinometer atau pengukur ketinggian. Sang murid mencari di google dan didapatkan rangkaian yg menggunakan acelerometer tapi kendalanya harga yang mahal dan dia pun kesulitan mengerjakannya. Solusi saya cukup sederhana dengan memanfaatkan putaran sudut yg dikonversikan ke putaran potensiometer (variable resistor) yang kemudian dirubah ke dalam level tegangan dan dibaca ADC.


Gambar diatas merupakan ilustrasi trigonometri dari sebuah clinometer dengan mencoba memanfaatkan rumus trigonometri. Keuntungan rumus diatas adalah tidak perlu menentukan jarak pengamat ke benda yang diukur,akan tetapi karena mengandalkan rumus tangen maka dari grafik tangen berikut terjadi sedikit anomali pengukuran jika sudut mendekati kelipatan 90 derajat, dimana tangent 90 adalah tak berhingga !.

grafik tangen yang tidak linear sedikit mempengaruhi keakuratan


Pemilihan potensiometer yang akan digunakan sebagai penerjemah dari sudut ke tegangan (menggunakan prinsip pembagian tegangan) juga perlu diperhatikan karena pada umumnya potentiometer yg dijual dipasaran adalah potentiometer audio yg bersifat logaritmik. Jadi potentiometer yang dipilih adalah berjenis "wire wound" atau yang umum di pasaran bernama "potensiometer nikel".



Output dari project kali ini menggunakan lcd 16x2 yang akan menampilkan nilai sudut alpha, beta dan nilai hasil pengukuran ketinggian.



Perputaran sudut pengukuran vs tegangan yg dihasilkan dapat menggunakan rumus pembagian 10 bit adc (0 - 1023) sehingga didapat sudut yang mewakili per bit. Tentunya potensiometer tidaklah terlalu linear karena banyak faktor dan untungnya kita hanya menggunakan sudut 0-90 derajat saja untuk alpha maupun beta. Saya mendapatkan untuk sudut 0-90 dapat menggunakan pembagian nilai bulat per bit ADC yaitu  "pembacaan adc / 3". Jadi sesuaikan dulu dengan respon nilai potensiometer yang kamu punya dengan sudut yang dihasilkan.

Untuk pengukuran tangen pada WinAvr akan digunakan library "math.h" dimana pengukuran sudut akan dirubah menjadi satuan radian. Rumus yang digunakan tentunya akan sangat memakan memory akibat nilai "float" yang digunakan. Hal ini kita akali saja dengan menggunakan unsigned integer 32 bit dengan pendekatan seperti berikut :

  • tana = tan((M_PI*adcalpha)/180)*1000;
  • tanb = tan((M_PI*adcbeta)/180)*1000;
  • tinggi= (tanb/tana) + 1 ;

Kita ingat juga konversi dari derajat ke radian digunakan rumus :


  • RADIAN = (PI * sudut ) /180 


Pengali 1000 pada rumus diatas digunakan untuk mendapatkan nilai float (pecahan / koma) menjadi ratusan sehingga pembagian menjadi agak bulat.


Skematiknya adalah sebagai berikut ini :

klik untuk memperjelas


Script selengkapnya seperti dibawah ini, diasumsikan bahwa tinggi pengamat 1 meter :


#define F_CPU 4000000UL
#include <string.h>
#include <avr/io.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include <math.h>
#include "lcd.h"

char derajat = 0xDF; // karakter derajat

void reverse(char s[]) //rutin untuk merubah angka ke ascii
   int c, i, j; 
    
   for (i = 0, j = strlen(s)-1; i < j; i++, j--){ 
      c = s[i]; 
      s[i] = s[j]; 
      s[j] = c; 
   } 
void itoa(uint16_t n, char s[]) 
//rutin untuk merubah angka ke ascii
   uint16_t i;
   
   i = 0; 
   do {   // generate digits in reverse order 
      s[i++] = n % 10 + '0'; // get next digit 
   } while ((n /= 10) > 0); // delete it 

   s[i] = '\0'; // add null terminator for string 
   reverse(s); 


void initADC() //inisialisasi ADC
{
ADMUX=(1<<REFS0);// Aref=AVcc;
ADCSRA=(1<<ADEN)|(7<<ADPS0);
}


uint16_t ReadADC(uint8_t ch) //pembacaan ADC
{
   //Select ADC Channel ch must be 0-7
   ch=ch&0b00000111;
   ADMUX|=ch;

   //Start Single conversion

   ADCSRA|=(1<<ADSC);

   //Wait for conversion to complete
   while(!(ADCSRA & (1<<ADIF)));

   //Clear ADIF by writing one to it
   ADCSRA|=(1<<ADIF);

   return(ADC);
}

int main(void)
{

uint16_t baca1,baca2,tana,tanb,tinggi;
char dum;

lcd_init(LCD_DISP_ON);//inisialisasi LCD
lcd_clrscr(); //bersihkan LCD

   while(1)
   {
      initADC(); 

      baca1=ReadADC(6) / 3; //baca alpha
      if(baca1 <90){ //jika hasil tidak lewat 90 derajat

      lcd_gotoxy(0,0);
      lcd_putc(224); //ascii alpha
      lcd_puts(" =");

          itoa(baca1,&dum);
  lcd_puts(&dum);
 lcd_putc(derajat);
 lcd_putc(' ');
 
 }

 else{ //jika lebih 90 di warning
          lcd_gotoxy(0,0);
 lcd_putc(224);
 lcd_puts(" =max");
 }


     _delay_ms(100);

initADC();


     baca2= ReadADC(5) / 3; //baca beta

     if(baca2 <90){  // jika perhitungan < 90 derajat
 
 lcd_gotoxy(8,0);
 lcd_putc(226);
          lcd_puts(" =");

          itoa(baca2,&dum);
 lcd_puts(&dum);
 lcd_putc(derajat);
 lcd_putc(' ');
      }

      else{  //jika lebih 90 di warning
          lcd_gotoxy(8,0);
 lcd_putc(226);
 lcd_puts(" =max");
 }

      _delay_ms(100);
 lcd_gotoxy(0,1);
      

      if(baca1 <90 && baca2 <90){
          //PERHITUNGAN TINGGI
          tana = tan((M_PI*baca1)/180)*1000;
 tanb = tan((M_PI*baca2)/180)*1000;
 tinggi= (tanb/tana) + 1 ;
 
 lcd_puts(" TINGGI:");
          itoa(tinggi,&dum);
 lcd_puts(&dum);
 lcd_puts(" m");
 lcd_puts("        ");
 }

         else{
          lcd_gotoxy(0,1);
 lcd_puts(" TINGGI: Error !");
 }
   }
return 0;

}


SELAMAT MENCOBA  
Share:

Kamis, 02 Januari 2014

Trick Pada Mikrokontroler Saat Catuan Menghilang




Selamat Tahun Baru 2014 kepada pembaca setia aisi555 dot com. Semoga ditahun yang baru ini berbagi ilmunya semakin bermanfaat bagi kita semua. Doakan saya juga agar sehat dan terus berkreasi serta membagi ilmu kepada kalian semua. 

Tahun baru ini dimulai dengan berbagi trick mengatasi masalah hilangnya catuan pada microcontroller. Kita tidak akan membahas fasilitas sleep mode dan low power mode lainnya karena ada alasan yg menyebabkan hal ini tidak diperlukan pada level mikrokontroler sederhana. Yang kita akan bahas adalah jawaban dari pertanyaan yang beberapa hari yang lalu disampaikan oleh pembaca.

  1. Bagaimana membuat jam digital tetap jalan saat lampu mati sehingga saat nyala kembali jam tidak kacau ?
  2. Bagaimana melanjutkan hasil counter di alat saya pada saat catuan menyala lagi ?

Pembahasan kali ini menggunakan metode battery backup dan yang lainnya menggunakan memory EEPROM yg sudah dimiliki mikrokontroler untuk menyimpan data sebelum catuan hilang. Untuk itu sebelum melanjutkan agar terlebih dahulu membaca pembahasan mengenai eeprom disini.


Bagaimanakah logika dari rangkaian diatas ? Prinsip yang digunakan adalah prinsip arus searah dari dioda.


VCC atau sumber tegangan dari microcontroller yang masih ditoleransi adalah minimal 2.5 volt (kecuali pengukuran ADC). Saat supply utama masih memberikan tegangan maka gambar dibawah ini mewakili kondisinya.


Jika tegangan baterai yang diberikan bernilai kurang dari VCC + 0.5 volt (forward voltage)  dari tegangan dikiri katode maka arus tidak akan mengalir ke arah VCC. Dalam contoh digunakan 3 buah baterai 1.5 volt yg ekivalen kurang dari 4.5 volt. Apa yang terjadi ketika sumber utama tidak ada ? Berikut ini gambarannya.


Dengan tidak adanya sumber di kiri katoda maka VCC akan benilai  tegangan baterai dikurangi 0.5 volt yang merupakan forward voltage dari dioda. Trick yg mungkin menghemat penggunaan baterai saat catuan utama mati adalah dengan mematikan fungsi yg memakan energi besar. Ini menjawab pertanyaan no 1 yang intinya adalah untuk menjaga fungsi waktu tidak kacau sehingga tidak diperlukan tampilan ke display 7 segmen. Caranya adalah dengan menggunakan supply yg terpisah ke catuan display 7 segmen dan catuan ini bersumber ke adaptor/trafo yg akan mati ketika PLN mati. Cara lainnya adalah dengan menggunakan deteksi tegangan menggunakan transistor.



Script deteksinya mudah saja


if(bit_is_clear(PIND, PIND2) ) // jika catuan normal
{

 yang_boros_nyala(); 

}

else  // jika catuan mati dan baterai aktif

{

 yang_boros_mati(); 

}


Trick seperti gambar diatas dapat juga digunakan untuk menjawab pertanyaan kedua. Ini alasannya mengapa deteksinya dipasang di PIN D2 yang juga merupakan pin untuk INT 0. Marilah kita ingat pembahasan interrupt disini. Jadi saat power supply mati maka deteksi dari low ke high akan kita gunakan untuk proses penyimpanan data counter sebelum sumber benar-benar hilang. Bagaimana ceritanya menjalankan mikrokontroller padahan tegangan sumber tidak ada  ? Jawabannya cukup simpel dengan menggunakan kapasitor pada VCC untuk menyimpan tegangan 5 volt beberapa saat.



Bagaimana dengan scriptnya ? Kita inisialisasi dulu Interuptnya , kali ini menggunakan ATMega 8535


#define F_CPU 4000000UL
#include <avr/io.h>
#include <avr/interrupt.h>  // INI JANGAN LUPA !!
#include <avr/eeprom.h>
#include <util/delay.h>


uint8_t EEMEM eecounter;

uint8_t counter;


void init_interupt(void)
{
  
// interrupt aktif ketika perubahan Low ke High (0--> 1)
MCUCR |= (1<<ISC01)|(1<<ISC00) ; 
  
// aktifkan INT 0
GICR |= (1<<INT0);

   sei();

}




Dan ketika saat power PLN mati dan kemudian basis transistor tidak mendapatkan tegangan maka transistor akan ada pada kondidi cut off sehingga pada pin INT 0 terjadi perubahan dari LOW (0) ke HIGH (5volt) dan berdasarkan inisialisasi telah ditentukan trigger interrupt pada kondisi "rising edge" . Pada kondisi ini hasil dari counter disimpan ke EEPROM.


ISR(SIG_INTERRUPT0) 

eeprom_write_byte(&eecounter,counter);

}



Dan ketika listrik menyala kembali yang pertama dilakukan adalah membaca isi eeprom dari counter



int main(void)
{


counter= eeprom_read_byte(&eecounter); //baca eeprom

init_interupt(); //inisialisasi interrupt


while(1)
{

// contoh program penambahan counter
// sesuaikan dengan keperluan

counter++;  

_delay_ms(2000);


}

return(0);

}




SELAMAT MENCOBA
Share:

Jumat, 20 Desember 2013

[TUTORIAL] Keypad + LCD + Password



Tutorial berikut ini merupakan kelanjutan dari pembahasan sebelumnya mengenai keypad dan lcd dengan menitikberatkan pada proses input dan pengecekan password. Prinsipnya mudah saja hanya dengan memindahkan penekanan tombol ke array memory dan kemudian membandingkannya dengan password yg diinginkan. Untuk itu agar diperhatikan juga pembahasan mengenai ARRAY.



uint8_t pas[6];  // ARRAY untuk menyimpan inputan tombol
uint8_t pase[6]={ 1,2,3,4,5,6 } ; //ARRAY password yg akan dibandingkan




Langkah pertama mendeklarasikan ARRAY yg akan menyimpan inputan tombol. Kita batasi jumlah password yg diinput 6 angka sehingga array ini memiliki panjang 6. Setiap tombol ditekan maka array pas[ ] akan dimasukkan nilai dari variabel keypad.



Untuk menampilkan karakter diatas scriptnya adalah :


lcd_init(LCD_DISP_ON_CURSOR);  //inisialisasi LCD
lcd_puts(" Input Password:");
lcd_gotoxy(4,1);              //pindah baris



Sedangkan untuk memindahkan inputan keypad seperti berikut:


//jika tombol ditekan (bukan * dan # )
if(keypad!= 100 && keypad !=21 && keypad !=20 ) 
 {  
  

   if( posisi < 6 ) {    //ada 6 buah password
   lcd_putc('*') ; // tampilkan asterix untuk password
   pas[posisi]=keypad; //pindahkan nilai keypad ke array
      posisi++; //tambahkan nilai posisi
 
      }

 

 _delay_ms(150);   
   

   }






 Jika ingin mengoreksi password yg telah dimasukkan , maka cancel diwakili oleh tombol '*' dan scriptnya seperti berikut :


if(keypad == 21 )  // penekanan * berarti hapus 1 kebelakang
 {  
  

 
 if(posisi != 0)  posisi--;  //posisi kursor dikurangi



  

  lcd_gotoxy((posisi +4),1); //mundur 1 posisi 
  lcd_putc(' '); //bersihkan kursor
  lcd_gotoxy((posisi +4),1); //balik lagi


 
 _delay_ms(150);   
   

   }






Berikut ini adalah script untuk membandingkan password :


 if(keypad == 20 )  // penekanan # berarti password bisa dicek
 { 


  if(posisi == 5) { //jika sudah semua password dimasukkan
//berikut ini pembanding
   if( pas[0] == pase[0] && pas[1] == pase[1] && pas[2] == pase[2] && pas[3] == pase[3] && pas[4] == pase[4] && pas[5] == pase[5]  )

    {

     lcd_gotoxy(1,0);
  lcd_puts(" Password Benar "); //jika benar

 }
   else
   {
   
     lcd_gotoxy(1,0);
  lcd_puts(" Password Salah "); //jika salah
   }   
  
  
  }




 _delay_ms(150); 

 }





Hasilnya seperti berikut :





Script selengkapnya dapat didownload disini.



SELAMAT MENCOBA


Share:

Kamis, 19 Desember 2013

[TUTORIAL] KEYPAD to 16 x 2 LCD MATRIX



Sebelum melanjutkan ke tutorial berikut ada baiknya membaca pembahasan terdahulu mengenai keypad dan menulis ke lcd


Episode berikut dari pembahasan mengenai keypad akan membahas mengenai pemindahan data dari keypad menuju LCD Matrix 16x2 . Display LCD yang umum didapatkan di toko hoby elektronika ini berharga dikisaran 40-60 ribu. Sedangkan modul keypad dijual dengan harga 30 ribu (keypad keras) dan 20 ribu untuk keypad pita/tipis. 


Pembahasan mengenai penulisan LCD pernah ditulis dalam blog ini, dimana akan digunakan library langsung pakai yang sangat simple yaitu pfleury. Ada 2 file yang harus dicopykan yaitu lcd.h dan lcd.c yang kemudian akan ditambahkan pada script. Untuk lcd.h perlu dilakukan penyesuaian terhadap penempatan kaki-kaki pin dari lcd terhadap microcontroller yang digunakan. Perhatikan skematik yg digunakan dalam tutorial ini.


klik pada gambar untuk memperjelas



Rangkaian diatas menggunakan AVR ATMEGA8535 , dengan PortA sebagai kontrol LCD dan mode data yg digunakan 4 bit. Jadi pada file lcd.h diubah sebagai berikut :





#define XTAL 1000000 //default clock adalah 1Mhz

#define LCD_LINES 2      // jumlah line LCD
#define LCD_DISP_LENGTH 16 // jumlah karakter per line


#define LCD_IO_MODE 1    // mode 0=8bit, 1=4 bit

// selanjutnya adalah definisi pin yang dipakai, berikut ini hasil edit yang sesuai skematik diatas

#define LCD_PORT PORTA
#define LCD_DATA0_PORT LCD_PORT
#define LCD_DATA1_PORT LCD_PORT
#define LCD_DATA2_PORT LCD_PORT
#define LCD_DATA3_PORT LCD_PORT
#define LCD_DATA0_PIN 3
#define LCD_DATA1_PIN 2
#define LCD_DATA2_PIN 1
#define LCD_DATA3_PIN 0
#define LCD_RS_PORT 
LCD_PORT
#define LCD_RS_PIN 6
#define LCD_RW_PORT 
LCD_PORT
#define LCD_RW_PIN 5
#define LCD_E_PORT 
LCD_PORT

#define LCD_E_PIN 4 

Jangan lupa juga dengan cara menambahkan library lcd.c seperti gambar berikut (AVR STUDIO 4)



Karena penulisan LCD matrix sangat simple , maka script pun menjadi semakin simple. Hanya dengan menggunakan logika sederhana untuk menentukan baris yang akan ditulis maka didapatkan script utama seperti berikut :




int main(void)

{

uint8_t keypad,posisi;
 
DDRA |= _BV(PA0) | _BV(PA1) | _BV(PA2) | _BV(PA3) | _BV(PA4) | _BV(PA5) | _BV(PA6)  ; //LCD PORT yg digunakan
  
    
   //keypad     
    DDRD &= ~_BV(PD0) & ~_BV(PD1) & ~_BV(PD2); //col 
    DDRD |= _BV(PD3) | _BV(PD4) | _BV(PD5) | _BV(PD6); //row


posisi=0; //variabel penanda posisi kursor


lcd_init(LCD_DISP_ON_CURSOR); //inisialisasi LCD

 while(1)

 {
   
keypad=tombol(); //fungsi keypad, silahkan baca pembahasan sebelumnya

if(keypad!= 100 && keypad !=21 && keypad !=20 ) //jika tombol ditekan
 {  
  

   if( posisi < 32 ) {    //ada 32 buah ruang untuk menulis  (16 x 2 )
      lcd_putc( keypad + 48 ) ; //48 adalah ascii dari angka 0
      posisi++; //tambahkan nilai posisi
 
      }

 
 if(posisi == 16){ //jika melewati 16 karakter di baris 1
 
 lcd_gotoxy(0,1); //pindah ke baris kedua

 } 


 _delay_ms(150);   
   

   }
   



if(keypad == 21 )  // penekanan * berarti hapus 1 kebelakang
 {  
  

 
 if(posisi != 0)  posisi--;  //posisi kursor dikurangi



 if(posisi < 16 ){ //baris 1

  lcd_gotoxy(posisi,0); //mundur 1 posisi di baris 1
  lcd_putc(' '); //bersihkan kursos
  lcd_gotoxy(posisi,0); //balik lagi


 } 

 else { //baris 2

  lcd_gotoxy((posisi - 16),1); //mundur 1 posisi di baris 2
  lcd_putc(' '); //bersihkan angka
  lcd_gotoxy((posisi - 16),1); //balik lagi

 }
 
 _delay_ms(150);   
   

   }


else if(keypad == 20 )  // penekanan # berarti bersihkan layar lcd
 { 

posisi = 0;

lcd_clrscr();


 _delay_ms(150); 

 }



}

return 0;

}



Yang menarik dari script diatas adalah karena yg ditampilkan berupa angka saja sedangkan LCD menerima input karakter ASCII, maka untuk merubah dari integer ke ascii cukup dengan menambahkan angka 48. Kenapa ? Karena ascii dari angka 0-9 berurutan dari 48-57 jadi simple saja menggunakan script  lcd_putc( keypad + 48)  Script selengkapnya dapat didownload di sini.


SELAMAT MENCOBA
Share:

Rabu, 18 Desember 2013

[TUTORIAL] Keypad Matrix ke 7 segmen



Catatan : Untuk mempelajari tutorial ini agar memulai dengan praktek dasar input/output dan jam 7segmen


Tombol atau keypad merupakan alat input yg umum digunakan. Sebagai dasarnya adalah tactile switch seperti gambar berikut ini :


Gambar dikiri adalah contoh tactile switch (switch yg sensitif dan sekali sentuh) dan gambar dikanan adalah koneksi umum menggunakan pull up resistor 10k ohm , yang nantinya akan memberikan input dari logika HIGH (vcc) menuju logika LOW (gnd). Fungsi dari resistor adalah sebagai pembatas arus saat tombol ditekan sehingga tidak terjadi short antara vcc dan ground. Pada penekanan tombol yang akan kita cek adalah kondisi turun atau naik (menggunakan interupt) atau kondisi High / Low dengan teknik scanning. Kali ini akan dibahas metode scanning dengan script dasar pembacaan tombol sebagai berikut :


if (bit_is_clear(PIND, PIND5)) //tombol ada di pin D5
{
// kondisi yg diinginkan ditulis disini

_delay_ms(200); // delay untuk mengatasi de-bounching efek

}


Juga agar diperhatikan untuk mengeset pin D5 sebagai pin input pada inisialisasi port. Jika ingin menambahkan tombol lainnya cukup hanya dengan menambahkan rangkaian yg sama dan pencabangan di script if..else if. Jika memerlukan banyak tombol maka banyak pula pin microcontroller yang digunakan. Ada suatu teknik yg umum digunakan yaitu teknik scanning matrix dari tombol dengan mengubah pembacaan input dan output seperti yg biasanya kita dapatkan pada keypad matrix dibawah ini :



Gambar diatas menjelaskan bagaimana kombinasi dari 2 buah pin yang terhubung dan kemudian mewakili penekanan keypad. Keuntungan dari penggunaan matrix ini adalah berkurangnya penggunaan pin micro, yg seharusnya 12 pin menjadi hanya 7 pin Input Output saja. Mekanisme untuk pembacaan adalah dengan melakukan scanning dari kolom atau baris (pilih salah satu , digunakan sebagai OUTPUT) dan kemudian melakukan pembacaan pada pin yg dibuat sebagai INPUT.

Contoh penjabarannya adalah seperti berikut:


  • Row / Baris digunakan sebagai OUTPUT dan Micro akan membaca 3 pin Kolom
  • Micro akan melakukan output scanning "LOW" pada 4 pin baris (0111, 1011, 1101, 1110) secara bergantian
  • Micro kemudian akan membaca adakah input yg juga bernilai "LOW" , semisal saat scanning 0111 (paling kiri row 3), maka jika kolom 0 (sesuaikan pin microcontroller) bernilai "LOW" berarti yg ditekan adalah tombol " * " bintang begitu pula jika kolom 1 bernilai "LOW" maka yang ditekan adalah tombol " 0 ".
  • Pemilihan scanning aktif "LOW" atau "High" tergantung dari perlakuan pull up atau pull down dari pin input dalam hal ini pin kolom.


Secara scipt akan menjadi seperti ini :


uint8_t tombol(void)
{

uint8_t key=100; // nilai awal jika tidak ada penekanan


PORTD &= ~_BV(PD3);

PORTD |= _BV(PD4)|_BV(PD5)|_BV(PD6);  // scanning 0111
_delay_ms(1);


// berikut ini pembacaan tombol kolom sebagai input

if(bit_is_clear(PIND, PIND0))
{
key= 1;    
}
else if(bit_is_clear(PIND, PIND1))
{
key= 2;    
}

else if(bit_is_clear(PIND, PIND2))

{
key= 3;    
}


PORTD &= ~_BV(PD4);

PORTD |= _BV(PD3)|_BV(PD5)|_BV(PD6);  // scanning 1011
_delay_ms(1);

// berikut ini pembacaan tombol kolom sebagai input

if(bit_is_clear(PIND, PIND0)  )
{key= 4;    
}
else if(bit_is_clear(PIND, PIND1) )
{
key= 5;    
}

else if(bit_is_clear(PIND, PIND2) )

{
key= 6;    
}



PORTD &= ~_BV(PD5);

PORTD |= _BV(PD4)|_BV(PD3)|_BV(PD6); // scanning 1101
_delay_ms(1);

// berikut ini pembacaan tombol kolom sebagai input

if(bit_is_clear(PIND, PIND0) )
{key= 7;    
}
else if(bit_is_clear(PIND, PIND1) )
{
key= 8;    
}

else if(bit_is_clear(PIND, PIND2) )

{
key= 9;    
}



PORTD &= ~_BV(PD6);

PORTD |= _BV(PD4)|_BV(PD5)|_BV(PD3); // scanning 1110
_delay_ms(1);

// berikut ini pembacaan tombol kolom sebagai input

if(bit_is_clear(PIND, PIND1) )
{
key= 0;    
}

else if(bit_is_clear(PIND, PIND2))

{
key= 21; //mewakili *   
}
else if(bit_is_clear(PIND, PIND0) )
{key= 20;    //mewakili #
}


return key; // nilai integer dari variable key dikembalikan ke pemanggil




}



Dengan mengasumsikan bahwa pembaca sudah melakukan praktek microcontroller "jam sederhana" maka kita dapat melanjutkan menuju ke praktek sesungguhnya. Skematik dapat dilihat pada gambar berikut, menggunakan micro AVR ATMEGA8535 , micro lain tinggal menyesuaikan.




(klik pada gambar untuk memperjelas)



Sedangkan script lengkap pada percobaan ini sebagai berikut :


#define F_CPU 1000000L
#include <avr/io.h>
#include <util/delay.h>

uint8_t pencet, angka[4];

void segmen(int digit) // konversi angka ke segmen

{
    switch (digit)        
          {

  case 0 :  
     {

    PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2)  & ~_BV(PC3) 
            & ~_BV(PC4)  & ~_BV(PC5);

            PORTC |= _BV(PC6);
   
   break;
           }
  case 1 :
     {
      
   PORTC &= ~_BV(PC1) & ~_BV(PC2);

            PORTC |= _BV(PC0)|  _BV(PC3)|  _BV(PC4)|  _BV(PC5)|  _BV(PC6);
   
   break;
           }
  case 2 : 
     {
   PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC6) & ~_BV(PC4) & ~_BV(PC3);

            PORTC |= _BV(PC2)|  _BV(PC5) ;
   
      break;
           }  
  case 3 : 
      {

   PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2) & ~_BV(PC3) & ~_BV(PC6);

            PORTC |= _BV(PC4)|  _BV(PC5) ;
        
   break;
           }
  case 4 :
     {
      
   PORTC &= ~_BV(PC5) & ~_BV(PC1) & ~_BV(PC2) & ~_BV(PC6) ;

            PORTC |= _BV(PC3)|  _BV(PC4) |  _BV(PC0);
   
   break;
           }
  case 5 : 
     {

   PORTC &= ~_BV(PC0) & ~_BV(PC2)  & ~_BV(PC3) & ~_BV(PC6)  & ~_BV(PC5);

            PORTC |= _BV(PC1) |  _BV(PC4);
   
   break;
           }
  case 6 : 
     {

   PORTC &= ~_BV(PC0) & ~_BV(PC2)  & ~_BV(PC3) & ~_BV(PC6)  & ~_BV(PC5) & ~_BV(PC4);

            PORTC |= _BV(PC1) ;
   
      break;
           }
  case 7 : 
     {

   PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2);

            PORTC |=  _BV(PC3)|  _BV(PC4)|  _BV(PC5)|  _BV(PC6);
   
      break;
           }  
  case 8 : 
     {
   PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2)  & ~_BV(PC3) 
            & ~_BV(PC4)  & ~_BV(PC5)  & ~_BV(PC6);

      break;
           }
  case 9 : 
     {

   PORTC &= ~_BV(PC0) & ~_BV(PC1) & ~_BV(PC2)  & ~_BV(PC3) 
             & ~_BV(PC5)  & ~_BV(PC6);

   PORTC |= _BV(PC4); 

      break;
           }
  case 10 :
     {
         PORTC |= _BV(PC0) |  _BV(PC1) |  _BV(PC2) |  _BV(PC3)|
                _BV(PC4) | _BV(PC5) |  _BV(PC6) ;

      break;
           }



  }
}



void posisi(uint8_t pos) //posisi scanning 7 segmen

{
    switch (pos)   
    {
    case 0 :  
     {

           PORTA &= ~_BV(PA4) &  ~_BV(PA5)& ~_BV(PA6) & ~_BV(PA7) ;
               
   break;
           }

    case 1 :  
     {

            PORTA |= _BV(PA4);

            PORTA &= ~_BV(PA5) & ~_BV(PA6) & ~_BV(PA7) ;
   

               
   break;
           }

    case 2 :  
     {

            PORTA |= _BV(PA5);

            PORTA &= ~_BV(PA4) & ~_BV(PA6) & ~_BV(PA7) ;
           
   break;
           }

    case 3 :  
     {

            PORTA |= _BV(PA6);

            PORTA &= ~_BV(PA4) & ~_BV(PA5) & ~_BV(PA7)  ;
   
                 
   break;
           }


    case 4 :  
     {

            PORTA |= _BV(PA7);

            PORTA &= ~_BV(PA4) & ~_BV(PA5) & ~_BV(PA6)  ;

   break;
           }

         }

}


void tulis(void) //menulis angka ke 7 segmen

{  

    posisi(1);
    
    if( pencet <1) segmen(10); 
    else segmen(angka[0]);
 } 
 
    _delay_us(300);
    segmen(10);
     

    posisi(2);
    
    if( pencet <2) segmen(10);
    else segmen(angka[1]);
 } 
 
    _delay_us(300);
    segmen(10);

    posisi(3);
    
    if( pencet <3) segmen(10);
    else segmen(angka[2]);
 } 
 
    _delay_us(300);
    segmen(10);

    posisi(4);
    
    if( pencet <4) segmen(10);
    else segmen(angka[3]);
 } 
 
    _delay_us(300);
    segmen(10);
 

 


}




uint8_t tombol(void) //penerjemahan penekanan tombol
{

uint8_t key=100;

PORTD &= ~_BV(PD3);
PORTD |= _BV(PD4)|_BV(PD5)|_BV(PD6);
_delay_ms(1);


if(bit_is_clear(PIND, PIND0) )
{key= 1;    

}
else if(bit_is_clear(PIND, PIND1) )
{
key= 2;    

}

else if(bit_is_clear(PIND, PIND2))
{
key= 3;    

}


PORTD &= ~_BV(PD4);
PORTD |= _BV(PD3)|_BV(PD5)|_BV(PD6);

_delay_ms(1);

if(bit_is_clear(PIND, PIND0)  )
{key= 4;    

}
else if(bit_is_clear(PIND, PIND1) )
{
key= 5;    

}

else if(bit_is_clear(PIND, PIND2) )
{
key= 6;    

}



PORTD &= ~_BV(PD5);
PORTD |= _BV(PD4)|_BV(PD3)|_BV(PD6);

_delay_ms(1);

if(bit_is_clear(PIND, PIND0)  )
{key= 7;    

}
else if(bit_is_clear(PIND, PIND1) )
{
key= 8;    

}

else if(bit_is_clear(PIND, PIND2) )
{
key= 9;    

}



PORTD &= ~_BV(PD6);
PORTD |= _BV(PD4)|_BV(PD5)|_BV(PD3);
_delay_ms(1);


if(bit_is_clear(PIND, PIND1) )
{
key= 0;    

}

else if(bit_is_clear(PIND, PIND2) )
{
key= 21;  // mewakili *

}
else if(bit_is_clear(PIND, PIND0) )
{key= 20;  // mewakili #

}


return key;


}




int main(void)

{

uint8_t keypad;
 
   DDRA |= _BV(PA5) | _BV(PA6) | _BV(PA7) | _BV(PA4) ; //scanning 7 segmen 
   DDRC |= _BV(PC0) | _BV(PC1) | _BV(PC2) | _BV(PC3) | _BV(PC4) | _BV(PC5) | _BV(PC6) ; //segmen
    
   //keypad     
    DDRD &= ~_BV(PD0) & ~_BV(PD1) & ~_BV(PD2); //col 
    DDRD |= _BV(PD3) | _BV(PD4) | _BV(PD5) | _BV(PD6); //row


pencet=0;

angka[0]=1;
angka[1]=2;
angka[2]=3;
angka[3]=4;

 while(1)

 {
   
keypad=tombol();

if(keypad!= 100 && pencet == 0)
 {  
  
  angka[0]=keypad;
  pencet = 1;

 _delay_ms(150);   
   

   }
   

else if(keypad!= 100 && pencet == 1)
 {  
  
  angka[1]=keypad;
  pencet = 2;

 _delay_ms(150);   
   

   }
   
else if(keypad!= 100 && pencet == 2)
 {  
  
  angka[2]=keypad;
  pencet = 3;

 _delay_ms(150);   
   

   }

else if(keypad!= 100 && pencet == 3)
 {  
  
  angka[3]=keypad;
  pencet = 4;

 _delay_ms(150);   
   

   }



if(keypad == 21 || keypad == 20)  // penekanan * atau # membersihkan 7 segmen
 {  
  
  pencet = 0;

 _delay_ms(150);   
   

   }


}

return 0;

}






SELAMAT MENCOBA 
Share:

Kontak Penulis



12179018.png (60×60)
+628155737755

HP: 081331339072
Mail : ahocool@gmail.com

Site View

Categories

555 (7) 7 segmen (3) adc (4) amplifier (2) analog (10) android (11) antares (3) arduino (14) artikel (1) attiny (1) attiny2313 (17) blog (1) bluetooth (1) cmos (2) crypto (2) dasar (40) display (3) esp8266 (3) gcc (1) iklan (1) infrared (2) Input Output (3) iot (16) jam (6) jualan (12) kereta api (1) keyboard (1) keypad (3) kios pulsa (2) kit (6) komponen (12) komputer (3) komunikasi (1) kontrol (4) lain-lain (8) lcd (2) led (13) led matrix (6) line tracer (1) lm35 (1) memory (1) metal detector (4) microcontroller (55) mikrokontroller (7) mikrotik (5) ninmedia (2) ntp (1) paket belajar (19) palang pintu otomatis (1) parabola (42) pcb (2) praktek (2) project (33) proyek (1) python (1) radio (3) raspberry pi (4) remote (1) revisi (1) rfid (1) robot (1) rpm (2) rs232 (1) script break down (3) sdcard (3) sensor (1) sharing (3) signage (1) sinyal (1) sms (6) software (18) solusi (1) tachometer (2) telepon (7) televisi (87) television (15) transistor (1) troubleshoot (3) tulisan (71) tutorial (79) tvri (2) vu meter (2) vumeter (2) wav player (3) wayang (1) wifi (3)

Arsip Blog

Diskusi


kaskus
Forum Hobby Elektronika